Astrocytes promote peripheral nerve injury-induced reactive synaptogenesis in the neonatal CNS.

نویسندگان

  • Fu-Sun Lo
  • Shuxin Zhao
  • Reha S Erzurumlu
چکیده

Neonatal damage to the trigeminal nerve leads to "reactive synaptogenesis" in the brain stem sensory trigeminal nuclei. In vitro models of brain injury-induced synaptogenesis have implicated an important role for astrocytes. In this study we tested the role of astrocyte function in reactive synaptogenesis in the trigeminal principal nucleus (PrV) of neonatal rats following unilateral transection of the infraorbital (IO) branch of the trigeminal nerve. We used electrophysiological multiple input index analysis (MII) to estimate the number of central trigeminal afferent fibers that converge onto single barrelette neurons. In the developing PrV, about 30% of afferent connections are eliminated within 2 postnatal weeks. After neonatal IO nerve damage, multiple trigeminal inputs (2.7 times that of the normal inputs) converge on single barrelette cells within 3-5 days; they remain stable up to the second postnatal week. Astrocyte proliferation and upregulation of astrocyte-specific proteins (GFAP and ALDH1L1) accompany reactive synaptogenesis in the IO nerve projection zone of the PrV. Pharmacological blockade of astrocyte function, purinergic receptors, and thrombospondins significantly reduced or eliminated reactive synaptogenesis without changing the MII in the intact PrV. GFAP immunohistochemistry further supported these electrophysiological results. We conclude that immature astrocytes, purinergic receptors, and thrombospondins play an important role in reactive synaptogenesis in the peripherally deafferented neonatal PrV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional

19 Infraorbital nerve (ION) transection in neonatal rats leads to disruption of whisker20 specific neural patterns (barrelettes), conversion of functional synapses into silent 21 synapses and reactive gliosis in the brainstem trigeminal principal nucleus (PrV). Here 22 we tested the hypothesis that neonatal peripheral nerve crush injuries permit better 23 functional recovery of associated centr...

متن کامل

Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional recovery.

Infraorbital nerve (ION) transection in neonatal rats leads to disruption of whisker-specific neural patterns (barrelettes), conversion of functional synapses into silent synapses, and reactive gliosis in the brain stem trigeminal principal nucleus (PrV). Here we tested the hypothesis that neonatal peripheral nerve crush injuries permit better functional recovery of associated central nervous s...

متن کامل

Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury

Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-conta...

متن کامل

Microglial response to brain injury: a brief synopsis.

In addition to astrocytes and oligodendrocytes, microglia represent the third major population of glial cells within the central nervous system (CNS). Microglia are distributed ubiquitously throughout the brain and spinal cord, and one of their main functions is to monitor and sustain neuronal health. Microglial cells are quite sensitive to even minor disturbances in CNS homeostasis, and they b...

متن کامل

The multifaceted role of astrocytes in regulating myelination

Astrocytes are the major glial cell of the central nervous system (CNS), providing both metabolic and physical support to other neural cells. After injury, astrocytes become reactive and express a continuum of phenotypes which may be supportive or inhibitory to CNS repair. This review will focus on the ability of astrocytes to influence myelination in the context of specific secreted factors, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 6  شماره 

صفحات  -

تاریخ انتشار 2011